Elementary Concepts of Topology

Author: Paul Alexandroff

Publisher: Courier Corporation

ISBN: 0486155064

Category: Mathematics

Page: 64

View: 8698

Release On

Concise work presents topological concepts in clear, elementary fashion, from basics of set-theoretic topology, through topological theorems and questions based on concept of the algebraic complex, to the concept of Betti groups. Includes 25 figures.


Elementary Concepts of Topology

Author: Paul Alexandroff

Publisher: Courier Corporation

ISBN: 9780486607474

Category: Mathematics

Page: 73

View: 4973

Release On

Alexandroff's beautiful and elegant introduction to topology was originally published in 1932 as an extension of certain aspects of Hilbert's Anschauliche Geometrie. The text has long been recognized as one of the finest presentations of the fundamental concepts, vital for mathematicians who haven't time for extensive study and for beginning investigators. The book is not a substitute for a systematic text, but an unusually useful intuitive approach to the basic concepts. Its aim is to present these concepts in a clear, elementary fashion without sacrificing their profundity or exactness and to give some indication of how they are useful in increasingly more areas of mathematics. The author proceeds from the basics of set-theoretic topology, through those topological theorems and questions which are based upon the concept of the algebraic complex, to the concept of Betti groups which binds together central topological theories in a whole and upon which applications of topology largely rest. Wholly consistent with current investigations, in which a larger and larger part of topology is governed by the concept of homology, the book deals primarily with the concepts of complex, cycle, and homology. It points the way toward a systematic and entirely geometrically oriented theory of the most general structures of space. First English translation, prepared for Dover by Alan E. Farley. Preface by David Hilbert. Author's Foreword. Index. 25 figures.

Intuitive Concepts in Elementary Topology

Author: B.H. Arnold

Publisher: Courier Corporation

ISBN: 0486275760

Category: Mathematics

Page: 192

View: 5818

Release On

Classroom-tested and much-cited, this concise text is designed for undergraduates. It offers a valuable and instructive introduction to the basic concepts of topology, taking an intuitive rather than an axiomatic viewpoint. 1962 edition.

The Joy of x

Die Schönheit der Mathematik

Author: Steven Strogatz

Publisher: Kein & Aber AG

ISBN: 3036992693

Category: Mathematics

Page: 352

View: 5264

Release On

Mathematik durchdringt den ganzen Kosmos. Das weiß jeder, doch nur die wenigsten verstehen die Zusammenhänge wirklich. Steven Strogatz nimmt uns bei der Hand und spaziert mit uns durch diese Welt der Weisheit, Klarheit und Eleganz. Als Reiseleiter geht er neue, erfrischende Wege, deutet auf Besonderheiten, schildert Hintergründe und erklärt die unsichtbaren Mechanismen. Wir erfahren unter anderem von dem Wunder des Zählens, der genialen Einfachheit der Algebra, dem ewigen Erbe Newtons, dem Tango mit Quadraten, der Zweisamkeit von Primzahlen und der Macht des Unendlichen. Mit all seiner Begeisterung, seinem Scharfblick und seinem leichtem Ton hat Steven Strogatz ein herrliches Buch für alle geschrieben, die ihr Verständnis von Mathematik auf eine neue Art vertiefen möchten.

Elementary Topology

Author: Michael C. Gemignani

Publisher: Courier Corporation

ISBN: 9780486665221

Category: Mathematics

Page: 270

View: 8428

Release On

Topology is one of the most rapidly expanding areas of mathematical thought: while its roots are in geometry and analysis, topology now serves as a powerful tool in almost every sphere of mathematical study. This book is intended as a first text in topology, accessible to readers with at least three semesters of a calculus and analytic geometry sequence. In addition to superb coverage of the fundamentals of metric spaces, topologies, convergence, compactness, connectedness, homotopy theory, and other essentials, Elementary Topology gives added perspective as the author demonstrates how abstract topological notions developed from classical mathematics. For this second edition, numerous exercises have been added as well as a section dealing with paracompactness and complete regularity. The Appendix on infinite products has been extended to include the general Tychonoff theorem; a proof of the Tychonoff theorem which does not depend on the theory of convergence has also been added in Chapter 7.

Introduction to Topology

Third Edition

Author: Bert Mendelson

Publisher: Courier Corporation

ISBN: 0486135098

Category: Mathematics

Page: 224

View: 1702

Release On

Concise undergraduate introduction to fundamentals of topology — clearly and engagingly written, and filled with stimulating, imaginative exercises. Topics include set theory, metric and topological spaces, connectedness, and compactness. 1975 edition.

Das BUCH der Beweise

Author: Martin Aigner,Günter M. Ziegler

Publisher: Springer-Verlag

ISBN: 3662064545

Category: Mathematics

Page: 247

View: 861

Release On

Die elegantesten mathematischen Beweise, spannend und für jeden Interessierten verständlich. "Der Beweis selbst, seine Ästhetik, seine Pointe geht ins Geschichtsbuch der Königin der Wissenschaften ein. Ihre Anmut offenbart sich in dem gelungenen und geschickt illustrierten Buch." Die Zeit

Evolution of Mathematical Concepts

An Elementary Study

Author: Raymond L. Wilder

Publisher: Courier Corporation

ISBN: 0486490610

Category: Mathematics

Page: 216

View: 8996

Release On

Accessible to students and relevant to specialists, this remarkable book by a prominent educator offers a unique perspective on the evolutionary development of mathematics. Rather than conducting a survey of the history or philosophy of mathematics, Raymond L. Wilder envisions mathematics as a broad cultural phenomenon. His treatment examines and illustrates how such concepts as number and length were affected by historic and social events. Starting with a brief consideration of preliminary notions, this study explores the early evolution of numbers, the evolution of geometry, and the conquest of the infinite as embodied by real numbers. A detailed look at the processes of evolution concludes with an examination of the evolutionary aspects of modern mathematics.

Anschauliche Geometrie

Author: David Hilbert,Stefan Cohn-Vossen

Publisher: Springer-Verlag

ISBN: 3662366851

Category: Mathematics

Page: 312

View: 9979

Release On

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Elementary Point-Set Topology

A Transition to Advanced Mathematics

Author: Andre L. Yandl,Adam Bowers

Publisher: Courier Dover Publications

ISBN: 0486811018

Category: Mathematics

Page: 256

View: 8260

Release On

In addition to serving as an introduction to the basics of point-set topology, this text bridges the gap between the elementary calculus sequence and higher-level mathematics courses. The versatile, original approach focuses on learning to read and write proofs rather than covering advanced topics. Based on lecture notes that were developed over many years at The University of Seattle, the treatment is geared toward undergraduate math majors and suitable for a variety of introductory courses. Starting with elementary concepts in logic and basic techniques of proof writing, the text defines topological and metric spaces and surveys continuity and homeomorphism. Additional subjects include product spaces, connectedness, and compactness. The final chapter illustrates topology's use in other branches of mathematics with proofs of the fundamental theorem of algebra and of Picard's existence theorem for differential equations. "This is a back-to-basics introductory text in point-set topology that can double as a transition to proofs course. The writing is very clear, not too concise or too wordy. Each section of the book ends with a large number of exercises. The optional first chapter covers set theory and proof methods; if the students already know this material you can start with Chapter 2 to present a straight topology course, otherwise the book can be used as an introduction to proofs course also." — Mathematical Association of America

Introduction to Topological Groups

Author: Taqdir Husain

Publisher: Courier Dover Publications

ISBN: 0486828204

Category: Mathematics

Page: 240

View: 8425

Release On

Concise treatment covers semitopological groups, locally compact groups, Harr measure, and duality theory and some of its applications. The volume concludes with a chapter that introduces Banach algebras. 1966 edition.

Elementary Theory of Numbers

Author: William Judson LeVeque

Publisher: Courier Corporation

ISBN: 9780486663487

Category: Mathematics

Page: 132

View: 305

Release On

Superb introduction to Euclidean algorithm and its consequences, congruences, continued fractions, powers of an integer modulo m, Gaussian integers, Diophantine equations, more. Problems, with answers. Bibliography.


A First Course in Topology

An Introduction to Mathematical Thinking

Author: Robert A Conover

Publisher: Courier Corporation

ISBN: 0486780015

Category: Mathematics

Page: 272

View: 1446

Release On

Students must prove all of the theorems in this undergraduate-level text, which features extensive outlines to assist in study and comprehension. Thorough and well-written, the treatment provides sufficient material for a one-year undergraduate course. The logical presentation anticipates students' questions, and complete definitions and expositions of topics relate new concepts to previously discussed subjects. Most of the material focuses on point-set topology with the exception of the last chapter. Topics include sets and functions, infinite sets and transfinite numbers, topological spaces and basic concepts, product spaces, connectivity, and compactness. Additional subjects include separation axioms, complete spaces, and homotopy and the fundamental group. Numerous hints and figures illuminate the text. Dover (2014) republication of the edition originally published by The Williams & Wilkins Company, Baltimore, 1975. See every Dover book in print at www.doverpublications.com

Mathematics

Its Content, Methods and Meaning

Author: A. D. Aleksandrov,A. N. Kolmogorov,M. A. Lavrent’ev

Publisher: Courier Corporation

ISBN: 0486157873

Category: Mathematics

Page: 1120

View: 4676

Release On

Major survey offers comprehensive, coherent discussions of analytic geometry, algebra, differential equations, calculus of variations, functions of a complex variable, prime numbers, linear and non-Euclidean geometry, topology, functional analysis, more. 1963 edition.

Combinatorial Topology

Author: Pavel S. Aleksandrov

Publisher: Courier Corporation

ISBN: 9780486401799

Category: Mathematics

Page: 148

View: 1415

Release On

Clearly written, well-organized, 3-part text begins by dealing with certain classic problems without using the formal techniques of homology theory and advances to the central concept, the Betti groups. Numerous detailed examples.

Point Set Topology

Author: Steven A. Gaal

Publisher: Courier Corporation

ISBN: 0486472221

Category: Mathematics

Page: 336

View: 3889

Release On

Suitable for a complete course in topology, this text also functions as a self-contained treatment for independent study. Additional enrichment materials make it equally valuable as a reference. 1964 edition.

Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3834896551

Category: Mathematics

Page: 280

View: 5086

Release On

Dieses Buch ist eine Einführung in die Differentialgeometrie. Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Im Laufe der Neuauflagen wurde der Text erweitert, neue Aufgaben wurden hinzugefügt und am Ende des Buches wurden zusätzliche Hinweise zur Lösung der Übungsaufgaben ergänzt. Der Text wurde für die fünfte Auflage gründlich durchgesehen und an einigen Stellen verbessert.