Elements of Mathematics

From Euclid to Gödel

Author: John Stillwell

Publisher: Princeton University Press

ISBN: 1400880564

Category: Mathematics

Page: 440

View: 9900

Release On

Elements of Mathematics takes readers on a fascinating tour that begins in elementary mathematics—but, as John Stillwell shows, this subject is not as elementary or straightforward as one might think. Not all topics that are part of today's elementary mathematics were always considered as such, and great mathematical advances and discoveries had to occur in order for certain subjects to become "elementary." Stillwell examines elementary mathematics from a distinctive twenty-first-century viewpoint and describes not only the beauty and scope of the discipline, but also its limits. From Gaussian integers to propositional logic, Stillwell delves into arithmetic, computation, algebra, geometry, calculus, combinatorics, probability, and logic. He discusses how each area ties into more advanced topics to build mathematics as a whole. Through a rich collection of basic principles, vivid examples, and interesting problems, Stillwell demonstrates that elementary mathematics becomes advanced with the intervention of infinity. Infinity has been observed throughout mathematical history, but the recent development of "reverse mathematics" confirms that infinity is essential for proving well-known theorems, and helps to determine the nature, contours, and borders of elementary mathematics. Elements of Mathematics gives readers, from high school students to professional mathematicians, the highlights of elementary mathematics and glimpses of the parts of math beyond its boundaries.

Euclid's Elements

all thirteen books complete in one volume : the Thomas L. Heath translation

Author: Euclid,Dana Densmore

Publisher: Green Lion Pr

ISBN: N.A

Category: Mathematics

Page: 499

View: 2317

Release On

The classic Heath translation, in a completely new layout with plenty of space and generous margins. An affordable but sturdy sewn hardcover student and teacher edition in one volume, with minimal notes and a new index/glossary.


Euclid's Window

The Story of Geometry from Parallel Lines to Hyperspace

Author: Leonard Mlodinow

Publisher: Simon and Schuster

ISBN: 9781439135372

Category: Science

Page: 320

View: 6416

Release On

Through Euclid's Window Leonard Mlodinow brilliantly and delightfully leads us on a journey through five revolutions in geometry, from the Greek concept of parallel lines to the latest notions of hyperspace. Here is an altogether new, refreshing, alternative history of math revealing how simple questions anyone might ask about space -- in the living room or in some other galaxy -- have been the hidden engine of the highest achievements in science and technology. Based on Mlodinow's extensive historical research; his studies alongside colleagues such as Richard Feynman and Kip Thorne; and interviews with leading physicists and mathematicians such as Murray Gell-Mann, Edward Witten, and Brian Greene, Euclid's Window is an extraordinary blend of rigorous, authoritative investigation and accessible, good-humored storytelling that makes a stunningly original argument asserting the primacy of geometry. For those who have looked through Euclid's Window, no space, no thing, and no time will ever be quite the same.


The Four Pillars of Geometry

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 0387255303

Category: Mathematics

Page: 228

View: 8065

Release On

This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises

Euclid's Elements in Greek:

Author: Richard Fitzpatrick

Publisher: Lulu.com

ISBN: 1430319747

Category: Mathematics

Page: 368

View: 4725

Release On

Euclid's Elements is the most famous mathematical work of classical antiquity, and has had a profound influence on the development of modern Mathematics and Physics. This volume contains the definitive Ancient Greek text of J.L. Heiberg (1883), together with an English translation. For ease of use, the Greek text and the corresponding English text are on facing pages. Moreover, the figures are drawn with both Greek and English symbols. Finally, a helpful Greek/English lexicon explaining Ancient Greek mathematical jargon is appended. Volume III contains Book 10, and covers incommesurable magnitudes.

Mathematics and Its History

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 144196052X

Category: Mathematics

Page: 662

View: 1611

Release On

From a review of the second edition: "This book covers many interesting topics not usually covered in a present day undergraduate course, as well as certain basic topics such as the development of the calculus and the solution of polynomial equations. The fact that the topics are introduced in their historical contexts will enable students to better appreciate and understand the mathematical ideas involved...If one constructs a list of topics central to a history course, then they would closely resemble those chosen here." (David Parrott, Australian Mathematical Society) This book offers a collection of historical essays detailing a large variety of mathematical disciplines and issues; it’s accessible to a broad audience. This third edition includes new chapters on simple groups and new sections on alternating groups and the Poincare conjecture. Many more exercises have been added as well as commentary that helps place the exercises in context.

Euclid's Book on Divisions of Figures

With a Restoration Based on Woepcke's Text and on the Practica Geometriae of Leonardo Pisano (Classic Reprint)

Author: Raymond Clare Archibald

Publisher: CUP Archive

ISBN: N.A

Category: Mathematics

Page: 102

View: 6561

Release On

Excerpt from Euclid's Book on Divisions of Figures: With a Restoration Based on Woepcke's d104 and on the Practica Geometriae of Leonardo Pisano I. In all the problems it is required to divide the proposed figure into two parts having a given ratio. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.

The Joy of X

A Guided Tour of Math, from One to Infinity

Author: Steven Henry Strogatz

Publisher: Houghton Mifflin Harcourt

ISBN: 0547517653

Category: MATHEMATICS

Page: 316

View: 2261

Release On

A comprehensive tour of leading mathematical ideas by an award-winning professor and columnist for the New York Times Opinionator series demonstrates how math intersects with philosophy, science and other aspects of everyday life. By the author of The Calculus of Friendship. 50,000 first printing.

Reverse Mathematics

Proofs from the Inside Out

Author: John Stillwell

Publisher: Princeton University Press

ISBN: 1400889030

Category: Mathematics

Page: 200

View: 5978

Release On

This book presents reverse mathematics to a general mathematical audience for the first time. Reverse mathematics is a new field that answers some old questions. In the two thousand years that mathematicians have been deriving theorems from axioms, it has often been asked: which axioms are needed to prove a given theorem? Only in the last two hundred years have some of these questions been answered, and only in the last forty years has a systematic approach been developed. In Reverse Mathematics, John Stillwell gives a representative view of this field, emphasizing basic analysis—finding the “right axioms” to prove fundamental theorems—and giving a novel approach to logic. Stillwell introduces reverse mathematics historically, describing the two developments that made reverse mathematics possible, both involving the idea of arithmetization. The first was the nineteenth-century project of arithmetizing analysis, which aimed to define all concepts of analysis in terms of natural numbers and sets of natural numbers. The second was the twentieth-century arithmetization of logic and computation. Thus arithmetic in some sense underlies analysis, logic, and computation. Reverse mathematics exploits this insight by viewing analysis as arithmetic extended by axioms about the existence of infinite sets. Remarkably, only a small number of axioms are needed for reverse mathematics, and, for each basic theorem of analysis, Stillwell finds the “right axiom” to prove it. By using a minimum of mathematical logic in a well-motivated way, Reverse Mathematics will engage advanced undergraduates and all mathematicians interested in the foundations of mathematics.


A Certain Ambiguity

A Mathematical Novel

Author: Gaurav Suri,Hartosh Singh Bal

Publisher: Princeton University Press

ISBN: 9781400834778

Category: Fiction

Page: 296

View: 2698

Release On

While taking a class on infinity at Stanford in the late 1980s, Ravi Kapoor discovers that he is confronting the same mathematical and philosophical dilemmas that his mathematician grandfather had faced many decades earlier--and that had landed him in jail. Charged under an obscure blasphemy law in a small New Jersey town in 1919, Vijay Sahni is challenged by a skeptical judge to defend his belief that the certainty of mathematics can be extended to all human knowledge--including religion. Together, the two men discover the power--and the fallibility--of what has long been considered the pinnacle of human certainty, Euclidean geometry. As grandfather and grandson struggle with the question of whether there can ever be absolute certainty in mathematics or life, they are forced to reconsider their fundamental beliefs and choices. Their stories hinge on their explorations of parallel developments in the study of geometry and infinity--and the mathematics throughout is as rigorous and fascinating as the narrative and characters are compelling and complex. Moving and enlightening, A Certain Ambiguity is a story about what it means to face the extent--and the limits--of human knowledge.

An Imaginary Tale

The Story of √-1

Author: Paul J. Nahin

Publisher: Princeton University Press

ISBN: 9781400833894

Category: Mathematics

Page: 296

View: 4777

Release On

Today complex numbers have such widespread practical use--from electrical engineering to aeronautics--that few people would expect the story behind their derivation to be filled with adventure and enigma. In An Imaginary Tale, Paul Nahin tells the 2000-year-old history of one of mathematics' most elusive numbers, the square root of minus one, also known as i. He recreates the baffling mathematical problems that conjured it up, and the colorful characters who tried to solve them. In 1878, when two brothers stole a mathematical papyrus from the ancient Egyptian burial site in the Valley of Kings, they led scholars to the earliest known occurrence of the square root of a negative number. The papyrus offered a specific numerical example of how to calculate the volume of a truncated square pyramid, which implied the need for i. In the first century, the mathematician-engineer Heron of Alexandria encountered I in a separate project, but fudged the arithmetic; medieval mathematicians stumbled upon the concept while grappling with the meaning of negative numbers, but dismissed their square roots as nonsense. By the time of Descartes, a theoretical use for these elusive square roots--now called "imaginary numbers"--was suspected, but efforts to solve them led to intense, bitter debates. The notorious i finally won acceptance and was put to use in complex analysis and theoretical physics in Napoleonic times. Addressing readers with both a general and scholarly interest in mathematics, Nahin weaves into this narrative entertaining historical facts and mathematical discussions, including the application of complex numbers and functions to important problems, such as Kepler's laws of planetary motion and ac electrical circuits. This book can be read as an engaging history, almost a biography, of one of the most evasive and pervasive "numbers" in all of mathematics. Some images inside the book are unavailable due to digital copyright restrictions.


Elements of Algebra

Geometry, Numbers, Equations

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 1475739761

Category: Mathematics

Page: 184

View: 942

Release On

Algebra is abstract mathematics - let us make no bones about it - yet it is also applied mathematics in its best and purest form. It is not abstraction for its own sake, but abstraction for the sake of efficiency, power and insight. Algebra emerged from the struggle to solve concrete, physical problems in geometry, and succeeded after 2000 years of failure by other forms of mathematics. It did this by exposing the mathematical structure of geometry, and by providing the tools to analyse it. This is typical of the way algebra is applied; it is the best and purest form of application because it reveals the simplest and most universal mathematical structures. The present book aims to foster a proper appreciation of algebra by showing abstraction at work on concrete problems, the classical problems of construction by straightedge and compass. These problems originated in the time of Euclid, when geometry and number theory were paramount, and were not solved until th the 19 century, with the advent of abstract algebra. As we now know, alge bra brings about a unification of geometry, number theory and indeed most branches of mathematics. This is not really surprising when one has a historical understanding of the subject, which I also hope to impart.

Foundations and Fundamental Concepts of Mathematics

Author: Howard Eves

Publisher: Courier Corporation

ISBN: 048613220X

Category: Mathematics

Page: 368

View: 3787

Release On

Third edition of popular undergraduate-level text offers historic overview, readable treatment of mathematics before Euclid, Euclid's Elements, non-Euclidean geometry, algebraic structure, formal axiomatics, sets, more. Problems, some with solutions. Bibliography.


The Six-Cornered Snowflake

Author: Johannes Kepler

Publisher: Paul Dry Books

ISBN: 1589882857

Category: Science

Page: 150

View: 439

Release On

"In 1611, Kepler wrote an essay wondering why snowflakes always had perfect, sixfold symmetry. It's a simple enough question, but one that no one had ever asked before and one that couldn't actually be answered for another three centuries. Still, in trying to work out an answer, Kepler raised some fascinating questions about physics, math, and biology, and now you can watch in wonder as a great scientific genius unleashes the full force of his intellect on a seemingly trivial question, complete with new illustrations and essays to put it all in perspective."—io9, from their list "10 Amazing Science Books That Reveal The Wonders Of The Universe" When snow began to fall while he was walking across the Charles Bridge in Prague late in 1610, the eminent astronomer Johannes Kepler asked himself the following question: Why do snowflakes, when they first fall, and before they are entangled into larger clumps, always come down with six corners and with six radii tufted like feathers? In his effort to answer this charming and never-before-asked question about snowflakes, Kepler delves into the nature of beehives, peapods, pomegranates, five-petaled flowers, the spiral shape of the snail's shell, and the formative power of nature itself. While he did not answer his original question—it remained a mystery for another three hundred years—he did find an occasion for deep and playful thought. "A most suitable book for any and all during the winter and holiday seasons is a reissue of a holiday present by the great mathematician and astronomer Johannes Kepler…Even the endnotes in this wonderful little book are interesting and educationally fun to read."—Jay Pasachoff, The Key Reporter —New English translation by Jacques Bromberg —Latin text on facing pages —An essay, "The Delights of a Roving Mind" by Owen Gingerich —An essay, "On The Six-Cornered Snowflake" by Guillermo Bleichmar —Snowflake illustrations by Capi Corrales Rodriganez —John Frederick Nims' poem "The Six-Cornered Snowflake" —Notes by Jacques Bromberg and Guillermo Bleichmar

Naive Lie Theory

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 9780387782157

Category: Mathematics

Page: 217

View: 1195

Release On

In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).