Molecular Electronic-Structure Theory

Author: Trygve Helgaker,Poul Jorgensen,Jeppe Olsen

Publisher: John Wiley & Sons

ISBN: 1119019559

Category: Science

Page: 944

View: 3432

Release On

Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluation * Hartree-Fock theory * Configuration-interaction and multi-configurational self-consistent theory * Coupled-cluster theory for ground and excited states * Perturbation theory for single- and multi-configurational states * Linear-scaling techniques and the fast multipole method * Explicity correlated wave functions * Basis-set convergence and extrapolation * Calibration and benchmarking of computational methods, with applications to moelcular equilibrium structure, atomization energies and reaction enthalpies. Molecular Electronic-Structure Theory makes extensive use of numerical examples, designed to illustrate the strengths and weaknesses of each method treated. In addition, statements about the usefulness and deficiencies of the various methods are supported by actual examples, not just model calculations. Problems and exercises are provided at the end of each chapter, complete with hints and solutions. This book is a must for researchers in the field of quantum chemistry as well as for nonspecialists who wish to acquire a thorough understanding of ab initio molecular electronic-structure theory and its applications to problems in chemistry and physics. It is also highly recommended for the teaching of graduates and advanced undergraduates.

Molecular Electronic-Structure Theory

Author: Trygve Helgaker,Poul Jorgensen,Jeppe Olsen

Publisher: John Wiley & Sons

ISBN: 1119019567

Category: Science

Page: 944

View: 1921

Release On

Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluation * Hartree-Fock theory * Configuration-interaction and multi-configurational self-consistent theory * Coupled-cluster theory for ground and excited states * Perturbation theory for single- and multi-configurational states * Linear-scaling techniques and the fast multipole method * Explicity correlated wave functions * Basis-set convergence and extrapolation * Calibration and benchmarking of computational methods, with applications to moelcular equilibrium structure, atomization energies and reaction enthalpies. Molecular Electronic-Structure Theory makes extensive use of numerical examples, designed to illustrate the strengths and weaknesses of each method treated. In addition, statements about the usefulness and deficiencies of the various methods are supported by actual examples, not just model calculations. Problems and exercises are provided at the end of each chapter, complete with hints and solutions. This book is a must for researchers in the field of quantum chemistry as well as for nonspecialists who wish to acquire a thorough understanding of ab initio molecular electronic-structure theory and its applications to problems in chemistry and physics. It is also highly recommended for the teaching of graduates and advanced undergraduates.

Molecular Electronic-Structure Theory

Author: Trygve Helgaker,Poul Jorgensen,Jeppe Olsen

Publisher: John Wiley & Sons

ISBN: 9781118531471

Category: Science

Page: 944

View: 302

Release On

Ab initio quantum chemistry is increasingly paired with computational methods to solve intractable problems in chemistry and molecular physics. Now in a paperback edition, this comprehensive and technical work covers all the important aspects of modern molecular electronic-structure theory, clearly explaining quantum-mechanical methods and applications to molecular equilibrium structure, atomization energies, and reaction enthalpies. Extensive numerical examples illustrate each method described. An excellent resource for researchers in quantum chemistry and anyone interested in the theory and its applications.

A New Dimension to Quantum Chemistry

Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory

Author: N.A

Publisher: Oxford University Press, USA

ISBN: N.A

Category: Quantum chemistry.

Page: 471

View: 3157

Release On

In modern theoretical chemistry, the importance of the analytic evaluation of energy derivatives from reliable wave functions can hardly be overestimated. This monograph presents the formulation and implementation of analytical energy derivative methods in ab initio quantum chemistry. It includes a systematic presentation of the necessary algebraic formulae for all of the derivations. The coverage is limited to derivative methods for wave functions based on the variational principle, namely restricted Hartree-Fock (RHF), configuration interaction (CI) and multi-configuration self-consistent-field (MCSCF) wave functions. The monograph is intended to facilitate the work of quantum chemists, and will serve as a useful resource for graduate-level students of the field.

Quantum Chemistry

The Development of Ab Initio Methods in Molecular Electronic Structure Theory

Author: Henry F. Schaefer III

Publisher: Courier Corporation

ISBN: 0486151417

Category: Science

Page: 176

View: 3161

Release On

For each of 150 landmark papers in ab initio molecular electronic structure methods, the author provides a lucid commentary that focuses on methodology, rather than particular chemical problems. 1984 edition.

Modern Quantum Chemistry

Introduction to Advanced Electronic Structure Theory

Author: Attila Szabo,Neil S. Ostlund

Publisher: Courier Corporation

ISBN: 0486134598

Category: Science

Page: 480

View: 4109

Release On

This graduate-level text explains the modern in-depth approaches to the calculation of electronic structure and the properties of molecules. Largely self-contained, it features more than 150 exercises. 1989 edition.

Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems

Author: N.A

Publisher: Academic Press

ISBN: 0128130032

Category: Science

Page: 374

View: 8388

Release On

Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems, Volume 76, the latest release in the Advances in Quantum Chemistry series presents work and reviews of current work in quantum chemistry (molecules), but also includes scattering from atoms and solid state work of interest in physics. Topics covered in this release include the Present Status of Selected Configuration Interaction with Truncation Energy Error, Recent Developments in Asymptotic Expansions from Numerical Analysis and Approximation Theory, The kinetic energy Pauli enhancement factor and its role in determining the shell structure of atoms and molecules, Numerical Hartree-Fock and Many-Body Calculations for Diatomic Molecules, and more. Provides reports on current work in molecular and atomic quantum mechanics Contains work reported by many of the best scientists in the field Presents the latest release in the Advances in Quantum Chemistry series

Relativistic Electronic Structure Theory - Fundamentals

Author: N.A

Publisher: Elsevier

ISBN: 9780080540467

Category: Science

Page: 946

View: 3498

Release On

The first volume of this two part series is concerned with the fundamental aspects of relativistic quantum theory, outlining the enormous progress made in the last twenty years in this field. The aim was to create a book such that researchers who become interested in this exciting new field find it useful as a textbook, and do not have to rely on a rather large number of specialized papers published in this area. · No title is currently available that deals with new developments in relativistic quantum electronic structure theory · Interesting and relevant to graduate students in chemistry and physics as well as to all researchers in the field of quantum chemistry · As treatment of heavy elements becomes more important, there will be a constant demand for this title

Density-Functional Theory of Atoms and Molecules

Author: Robert G. Parr,Weitao Yang

Publisher: OUP USA

ISBN: 0195092767

Category: Political Science

Page: 333

View: 4576

Release On

Provides an account of the fundamental principles of the density-functional theory of the electronic structure of matter and its applications to atoms and molecules. This book contains a discussion of the chemical potential and its derivatives. It is intended for physicists, chemists, and advanced students in chemistry.

Ideas of Quantum Chemistry

Author: Lucjan Piela

Publisher: Elsevier

ISBN: 0444594574

Category: Science

Page: 1078

View: 4524

Release On

Ideas of Quantum Chemistry shows how quantum mechanics is applied to chemistry to give it a theoretical foundation. From the Schroedinger equation to electronic and nuclear motion to intermolecular interactions, this book covers the primary quantum underpinnings of chemical systems. The structure of the book (a TREE-form) emphasizes the logical relationships among various topics, facts and methods. It shows the reader which parts of the text are needed for understanding specific aspects of the subject matter. Interspersed throughout the text are short biographies of key scientists and their contributions to the development of the field. Ideas of Quantum Chemistry has both textbook and reference work aspects. Like a textbook, the material is organized into digestible sections with each chapter following the same structure. It answers frequently asked questions and highlights the most important conclusions and the essential mathematical formulae in the text. In its reference aspects, it has a broader range than traditional quantum chemistry books and reviews virtually all of the pertinent literature. It is useful both for beginners as well as specialists in advanced topics of quantum chemistry. An appendix on the Internet supplements this book. Presents the widest range of quantum chemical problems covered in one book Unique structure allows material to be tailored to the specific needs of the reader Informal language facilitates the understanding of difficult topics

Essentials of Computational Chemistry

Theories and Models

Author: Christopher J. Cramer

Publisher: John Wiley & Sons

ISBN: 1118712277

Category: Science

Page: 624

View: 6413

Release On

Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject. Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas. The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context.

Computational Quantum Chemistry

An Interactive Introduction to Basis Set Theory

Author: Charles M. Quinn

Publisher: Elsevier

ISBN: 9780080488530

Category: Science

Page: 237

View: 6726

Release On

Computational Quantum Chemistry removes much of the mystery of modern computer programs for molecular orbital calculations by showing how to develop Excel spreadsheets to perform model calculations and investigate the properties of basis sets. Using the book together with the CD-ROM provides a unique interactive learning tool. In addition, because of the integration of theory with working examples on the CD-ROM, the reader can apply advanced features available in the spreadsheet to other applications in chemistry, physics, and a variety of disciplines that require the solution of differential equations. This book and CD-ROM makes a valuable companion for instructors, course designers, and students. It is suitable for direct applications in practical courses in theoretical chemistry and atomic physics, as well as for teaching advanced features of Excel in IT courses.

Molecular Electronic Structures of Transition Metal Complexes II

Author: David Michael P. Mingos,Peter Day,Jens Peder Dahl

Publisher: Springer Science & Business Media

ISBN: 3642273785

Category: Science

Page: 236

View: 1693

Release On

T. Ziegler: A Chronicle About the Development of Electronic Structure Theories for Transition Metal Complexes.- J. Linderberg: Orbital Models and Electronic Structure Theory.- J.S. and J.E. Avery: Sturmians and Generalized Sturmians in Quantum Theory.- B.T Sutcliffe: Chemistry as a “Manifestation of Quantum Phenomena” and the Born–Oppenheimer Approximation?- A.J. McCaffery: From Ligand Field Theory to Molecular Collision Dynamics: A Common Thread of Angular Momentum.- M. Atanasov, D. Ganyushin, K. Sivalingam and F. Neese: A Modern First-Principles View on Ligand Field Theory Through the Eyes of Correlated Multireference Wavefunctions.- R.S. Berry and B.M. Smirnov: The Phase Rule: Beyond Myopia to Understanding.

Information Theory of Molecular Systems

Author: Roman F. Nalewajski

Publisher: Elsevier

ISBN: 0080459749

Category: Computers

Page: 462

View: 4368

Release On

As well as providing a unified outlook on physics, Information Theory (IT) has numerous applications in chemistry and biology owing to its ability to provide a measure of the entropy/information contained within probability distributions and criteria of their information "distance" (similarity) and independence. Information Theory of Molecular Systems applies standard IT to classical problems in the theory of electronic structure and chemical reactivity. The book starts by introducing the basic concepts of modern electronic structure/reactivity theory based upon the Density Functional Theory (DFT), followed by an outline of the main ideas and techniques of IT, including several illustrative applications to molecular systems. Coverage includes information origins of the chemical bond, unbiased definition of molecular fragments, adequate entropic measures of their internal (intra-fragment) and external (inter-fragment) bond-orders and valence-numbers, descriptors of their chemical reactivity, and information criteria of their similarity and independence. Information Theory of Molecular Systems is recommended to graduate students and researchers interested in fresh ideas in the theory of electronic structure and chemical reactivity. ·Provides powerful tools for tackling both classical and new problems in the theory of the molecular electronic structure and chemical reactivity ·Introduces basic concepts of the modern electronic structure/reactivity theory based upon the Density Functional Theory (DFT) ·Outlines main ideas and techniques of Information Theory

Theory and Applications of Computational Chemistry

The First Forty Years

Author: Clifford Dykstra,Gernot Frenking,Kwang Kim,Gustavo Scuseria

Publisher: Elsevier

ISBN: 0080456243

Category: Science

Page: 1336

View: 433

Release On

Computational chemistry is a means of applying theoretical ideas using computers and a set of techniques for investigating chemical problems within which common questions vary from molecular geometry to the physical properties of substances. Theory and Applications of Computational Chemistry: The First Forty Years is a collection of articles on the emergence of computational chemistry. It shows the enormous breadth of theoretical and computational chemistry today and establishes how theory and computation have become increasingly linked as methodologies and technologies have advanced. Written by the pioneers in the field, the book presents historical perspectives and insights into the subject, and addresses new and current methods, as well as problems and applications in theoretical and computational chemistry. Easy to read and packed with personal insights, technical and classical information, this book provides the perfect introduction for graduate students beginning research in this area. It also provides very readable and useful reviews for theoretical chemists. * Written by well-known leading experts * Combines history, personal accounts, and theory to explain much of the field of theoretical and compuational chemistry * Is the perfect introduction to the field

Electronic Structure Calculations on Graphics Processing Units

From Quantum Chemistry to Condensed Matter Physics

Author: Ross C. Walker,Andreas W. Goetz

Publisher: John Wiley & Sons

ISBN: 1118670701

Category: Science

Page: 368

View: 9659

Release On

Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics provides an overview of computing on graphics processing units (GPUs), a brief introduction to GPU programming, and the latest examples of code developments and applications for the most widely used electronic structure methods. The book covers all commonly used basis sets including localized Gaussian and Slater type basis functions, plane waves, wavelets and real-space grid-based approaches. The chapters expose details on the calculation of two-electron integrals, exchange-correlation quadrature, Fock matrix formation, solution of the self-consistent field equations, calculation of nuclear gradients to obtain forces, and methods to treat excited states within DFT. Other chapters focus on semiempirical and correlated wave function methods including density fitted second order Møller-Plesset perturbation theory and both iterative and perturbative single- and multireference coupled cluster methods. Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics presents an accessible overview of the field for graduate students and senior researchers of theoretical and computational chemistry, condensed matter physics and materials science, as well as software developers looking for an entry point into the realm of GPU and hybrid GPU/CPU programming for electronic structure calculations.

Multiconfigurational Quantum Chemistry

Author: Björn O. Roos,Roland Lindh,Per Ãke Malmqvist,Valera Veryazov,Per-Olof Widmark

Publisher: John Wiley & Sons

ISBN: 1119277884

Category: Science

Page: 240

View: 5751

Release On

The first book to aid in the understanding of multiconfigurational quantum chemistry, Multiconfigurational Quantum Chemistry demystifies a subject that has historically been considered difficult to learn. Accessible to any reader with a background in quantum mechanics and quantum chemistry, the book contains illustrative examples showing how these methods can be used in various areas of chemistry, such as chemical reactions in ground and excited states, transition metal and other heavy element systems. The authors detail the drawbacks and limitations of DFT and coupled-cluster based methods and offer alternative, wavefunction-based methods more suitable for smaller molecules.

Molecular Electronics

An Introduction to Theory and Experiment

Author: Elke Scheer

Publisher: World Scientific

ISBN: 9814282596

Category: Technology & Engineering

Page: 724

View: 7889

Release On

This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.