Optimal Control Theory

An Introduction

Author: Donald E. Kirk

Publisher: Courier Corporation

ISBN: 0486135071

Category: Technology & Engineering

Page: 480

View: 4786

Release On

Upper-level undergraduate text introduces aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization. Numerous figures, tables. Solution guide available upon request. 1970 edition.

Optimal Control Systems

Author: D. Subbaram Naidu

Publisher: CRC Press

ISBN: 9780849308925

Category: Technology & Engineering

Page: 464

View: 3668

Release On

The theory of optimal control systems has grown and flourished since the 1960's. Many texts, written on varying levels of sophistication, have been published on the subject. Yet even those purportedly designed for beginners in the field are often riddled with complex theorems, and many treatments fail to include topics that are essential to a thorough grounding in the various aspects of and approaches to optimal control. Optimal Control Systems provides a comprehensive but accessible treatment of the subject with just the right degree of mathematical rigor to be complete but practical. It provides a solid bridge between "traditional" optimization using the calculus of variations and what is called "modern" optimal control. It also treats both continuous-time and discrete-time optimal control systems, giving students a firm grasp on both methods. Among this book's most outstanding features is a summary table that accompanies each topic or problem and includes a statement of the problem with a step-by-step solution. Students will also gain valuable experience in using industry-standard MATLAB and SIMULINK software, including the Control System and Symbolic Math Toolboxes. Diverse applications across fields from power engineering to medicine make a foundation in optimal control systems an essential part of an engineer's background. This clear, streamlined presentation is ideal for a graduate level course on control systems and as a quick reference for working engineers.

Optimal Control

Author: Frank L. Lewis,Draguna Vrabie,Vassilis L. Syrmos

Publisher: John Wiley & Sons

ISBN: 1118122720

Category: Technology & Engineering

Page: 552

View: 7252

Release On

A new edition of the classic text on optimal control theory As a superb introductory text and an indispensable reference, this new edition of Optimal Control will serve the needs of both the professional engineer and the advanced student in mechanical, electrical, and aerospace engineering. Its coverage encompasses all the fundamental topics as well as the major changes that have occurred in recent years. An abundance of computer simulations using MATLAB and relevant Toolboxes is included to give the reader the actual experience of applying the theory to real-world situations. Major topics covered include: Static Optimization Optimal Control of Discrete-Time Systems Optimal Control of Continuous-Time Systems The Tracking Problem and Other LQR Extensions Final-Time-Free and Constrained Input Control Dynamic Programming Optimal Control for Polynomial Systems Output Feedback and Structured Control Robustness and Multivariable Frequency-Domain Techniques Differential Games Reinforcement Learning and Optimal Adaptive Control

Applied Optimal Control

Optimization, Estimation and Control

Author: A. E. Bryson

Publisher: Routledge

ISBN: 1351465910

Category: Technology & Engineering

Page: 496

View: 5467

Release On

This best-selling text focuses on the analysis and design of complicated dynamics systems. CHOICE called it ""a high-level, concise book that could well be used as a reference by engineers, applied mathematicians, and undergraduates. The format is good, the presentation clear, the diagrams instructive, the examples and problems helpful...References and a multiple-choice examination are included.

Optimal Control Theory for Applications

Author: David G. Hull

Publisher: Springer Science & Business Media

ISBN: 1475741804

Category: Technology & Engineering

Page: 384

View: 1901

Release On

The published material represents the outgrowth of teaching analytical optimization to aerospace engineering graduate students. To make the material available to the widest audience, the prerequisites are limited to calculus and differential equations. It is also a book about the mathematical aspects of optimal control theory. It was developed in an engineering environment from material learned by the author while applying it to the solution of engineering problems. One goal of the book is to help engineering graduate students learn the fundamentals which are needed to apply the methods to engineering problems. The examples are from geometry and elementary dynamical systems so that they can be understood by all engineering students. Another goal of this text is to unify optimization by using the differential of calculus to create the Taylor series expansions needed to derive the optimality conditions of optimal control theory.

Optimal Control

An Introduction

Author: Arturo Locatelli

Publisher: Springer Science & Business Media

ISBN: 9783764364083

Category: Language Arts & Disciplines

Page: 294

View: 7218

Release On

From the very beginning in the late 1950s of the basic ideas of optimal control, attitudes toward the topic in the scientific and engineering community have ranged from an excessive enthusiasm for its reputed capability ofsolving almost any kind of problem to an (equally) unjustified rejection of it as a set of abstract mathematical concepts with no real utility. The truth, apparently, lies somewhere between these two extremes. Intense research activity in the field of optimization, in particular with reference to robust control issues, has caused it to be regarded as a source of numerous useful, powerful, and flexible tools for the control system designer. The new stream of research is deeply rooted in the well-established framework of linear quadratic gaussian control theory, knowledge ofwhich is an essential requirement for a fruitful understanding of optimization. In addition, there appears to be a widely shared opinion that some results of variational techniques are particularly suited for an approach to nonlinear solutions for complex control problems. For these reasons, even though the first significant achievements in the field were published some forty years ago, a new presentation ofthe basic elements ofclassical optimal control theory from a tutorial point of view seems meaningful and contemporary. This text draws heavily on the content ofthe Italian language textbook "Con trollo ottimo" published by Pitagora and used in a number of courses at the Politec nico of Milan.

Optimal Control

An Introduction to the Theory with Applications

Author: Leslie M. Hocking

Publisher: Oxford University Press

ISBN: 9780198596820

Category: Mathematics

Page: 254

View: 7205

Release On

This textbook is a straightforward introduction to the theory of optimal control with an emphasis on presenting many different applications. Included are many worked examples and numerous exercises.

Optimal Control

Theory, Algorithms, and Applications

Author: William W. Hager,Panos M. Pardalos

Publisher: Springer Science & Business Media

ISBN: 1475760957

Category: Technology & Engineering

Page: 516

View: 4183

Release On

February 27 - March 1, 1997, the conference Optimal Control: The ory, Algorithms, and Applications took place at the University of Florida, hosted by the Center for Applied Optimization. The conference brought together researchers from universities, industry, and government laborato ries in the United States, Germany, Italy, France, Canada, and Sweden. There were forty-five invited talks, including seven talks by students. The conference was sponsored by the National Science Foundation and endorsed by the SIAM Activity Group on Control and Systems Theory, the Mathe matical Programming Society, the International Federation for Information Processing (IFIP), and the International Association for Mathematics and Computers in Simulation (IMACS). Since its inception in the 1940s and 1950s, Optimal Control has been closely connected to industrial applications, starting with aerospace. The program for the Gainesville conference, which reflected the rich cross-disci plinary flavor of the field, included aerospace applications as well as both novel and emerging applications to superconductors, diffractive optics, non linear optics, structural analysis, bioreactors, corrosion detection, acoustic flow, process design in chemical engineering, hydroelectric power plants, sterilization of canned foods, robotics, and thermoelastic plates and shells. The three days of the conference were organized around the three confer ence themes, theory, algorithms, and applications. This book is a collection of the papers presented at the Gainesville conference. We would like to take this opportunity to thank the sponsors and participants of the conference, the authors, the referees, and the publisher for making this volume possible.

Primer on Optimal Control Theory

Author: Jason L. Speyer,David H. Jacobson

Publisher: SIAM

ISBN: 0898716942

Category: Mathematics

Page: 307

View: 2794

Release On

A rigorous introduction to optimal control theory, which will enable engineers and scientists to put the theory into practice.

Optimal Control

An Introduction to the Theory and Its Applications

Author: Michael Athans,Peter L. Falb

Publisher: Courier Corporation

ISBN: 0486318184

Category: Technology & Engineering

Page: 896

View: 1711

Release On

Geared toward advanced undergraduate and graduate engineering students, this text introduces the theory and applications of optimal control. It serves as a bridge to the technical literature, enabling students to evaluate the implications of theoretical control work, and to judge the merits of papers on the subject. Rather than presenting an exhaustive treatise, Optimal Control offers a detailed introduction that fosters careful thinking and disciplined intuition. It develops the basic mathematical background, with a coherent formulation of the control problem and discussions of the necessary conditions for optimality based on the maximum principle of Pontryagin. In-depth examinations cover applications of the theory to minimum time, minimum fuel, and to quadratic criteria problems. The structure, properties, and engineering realizations of several optimal feedback control systems also receive attention. Special features include numerous specific problems, carried through to engineering realization in block diagram form. The text treats almost all current examples of control problems that permit analytic solutions, and its unified approach makes frequent use of geometric ideas to encourage students' intuition.

Optimal Control

Linear Quadratic Methods

Author: Brian D. O. Anderson,John B. Moore

Publisher: Courier Corporation

ISBN: 0486457664

Category: Technology & Engineering

Page: 448

View: 6798

Release On

Numerous examples highlight this treatment of the use of linear quadratic Gaussian methods for control system design. It explores linear optimal control theory from an engineering viewpoint, with illustrations of practical applications. Key topics include loop-recovery techniques, frequency shaping, and controller reduction. Numerous examples and complete solutions. 1990 edition.

Optimal Control

Author: Richard Vinter

Publisher: Springer Science & Business Media

ISBN: 9780817640750

Category: Science

Page: 500

View: 1175

Release On

“Each chapter contains a well-written introduction and notes. They include the author's deep insights on the subject matter and provide historical comments and guidance to related literature. This book may well become an important milestone in the literature of optimal control." —Mathematical Reviews “Thanks to a great effort to be self-contained, [this book] renders accessibly the subject to a wide audience. Therefore, it is recommended to all researchers and professionals interested in Optimal Control and its engineering and economic applications. It can serve as an excellent textbook for graduate courses in Optimal Control (with special emphasis on Nonsmooth Analysis)." —Automatica

Global Methods in Optimal Control Theory

Author: Vadim Krotov

Publisher: CRC Press

ISBN: 9780824793296

Category: Mathematics

Page: 408

View: 4088

Release On

This work describes all basic equaitons and inequalities that form the necessary and sufficient optimality conditions of variational calculus and the theory of optimal control. Subjects addressed include developments in the investigation of optimality conditions, new classes of solutions, analytical and computation methods, and applications.

Nonlinear Controllability and Optimal Control

Author: Sussmann

Publisher: Routledge

ISBN: 1351428322

Category: Mathematics

Page: 488

View: 3347

Release On

This outstanding reference presents current, state-of-the-art research on importantproblems of finite-dimensional nonlinear optimal control and controllability theory. Itpresents an overview of a broad variety of new techniques useful in solving classicalcontrol theory problems.Written and edited by renowned mathematicians at the forefront of research in thisevolving field, Nonlinear Controllability and Optimal Control providesdetailed coverage of the construction of solutions of differential inclusions by means ofdirectionally continuous sections ... Lie algebraic conditions for local controllability... the use of the Campbell-Hausdorff series to derive properties of optimal trajectories... the Fuller phenomenon ... the theory of orbits ... and more.Containing more than 1,300 display equations, this exemplary, instructive reference is aninvaluable source for mathematical researchers and applied mathematicians, electrical andelectronics, aerospace, mechanical, control, systems, and computer engineers, and graduatestudents in these disciplines .

Optimal Control and the Calculus of Variations

Author: Enid R. Pinch

Publisher: Oxford University Press

ISBN: 0198514891

Category: Literary Criticism

Page: 234

View: 1471

Release On

Optimal control is a modern development of the calculus of variations and classical optimization theory. For that reason, this introduction to the theory of optimal control starts by considering the problem of minimizing a function of many variables. It moves through an exposition of the calculus of variations, to the optimal control of systems governed by ordinary differential equations. This approach should enable students to see the essential unity of important areas of mathematics, and also allow optimal control and the Pontryagin maximum principle to be placed in a proper context. A good knowledge of analysis, algebra, and methods is assumed. All the theorems are carefully proved, and there are many worked examples and exercises. Although this book is written for the advanced undergraduate mathematician, engineers and scientists who regularly rely on mathematics will also find it a useful text.

Optimal Control

Calculus of Variations, Optimal Control Theory and Numerical Methods

Author: Bulirsch,Miele,Stoer,Well

Publisher: Birkhäuser

ISBN: 3034875398

Category: Juvenile Nonfiction

Page: 350

View: 5984

Release On

"Optimal Control" reports on new theoretical and practical advances essential for analysing and synthesizing optimal controls of dynamical systems governed by partial and ordinary differential equations. New necessary and sufficient conditions for optimality are given. Recent advances in numerical methods are discussed. These have been achieved through new techniques for solving large-sized nonlinear programs with sparse Hessians, and through a combination of direct and indirect methods for solving the multipoint boundary value problem. The book also focuses on the construction of feedback controls for nonlinear systems and highlights advances in the theory of problems with uncertainty. Decomposition methods of nonlinear systems and new techniques for constructing feedback controls for state- and control constrained linear quadratic systems are presented. The book offers solutions to many complex practical optimal control problems.

Optimal Control Theory

Author: L.D. Berkovitz

Publisher: Springer Science & Business Media

ISBN: 1475760973

Category: Mathematics

Page: 306

View: 4091

Release On

This book is an introduction to the mathematical theory of optimal control of processes governed by ordinary differential eq- tions. It is intended for students and professionals in mathematics and in areas of application who want a broad, yet relatively deep, concise and coherent introduction to the subject and to its relati- ship with applications. In order to accommodate a range of mathema- cal interests and backgrounds among readers, the material is arranged so that the more advanced mathematical sections can be omitted wi- out loss of continuity. For readers primarily interested in appli- tions a recommended minimum course consists of Chapter I, the sections of Chapters II, III, and IV so recommended in the introductory sec tions of those chapters, and all of Chapter V. The introductory sec tion of each chapter should further guide the individual reader toward material that is of interest to him. A reader who has had a good course in advanced calculus should be able to understand the defini tions and statements of the theorems and should be able to follow a substantial portion of the mathematical development. The entire book can be read by someone familiar with the basic aspects of Lebesque integration and functional analysis. For the reader who wishes to find out more about applications we recommend references [2], [13], [33], [35], and [50], of the Bibliography at the end of the book.

Counterexamples in Optimal Control Theory

Author: Semen Ya. Serovaiskii

Publisher: Walter de Gruyter

ISBN: 3110915537

Category: Mathematics

Page: 182

View: 868

Release On

This monograph deals with cases where optimal control either does not exist or is not unique, cases where optimality conditions are insufficient of degenerate, or where extremum problems in the sense of Tikhonov and Hadamard are ill-posed, and other situations. A formal application of classical optimisation methods in such cases either leads to wrong results or has no effect. The detailed analysis of these examples should provide a better understanding of the modern theory of optimal control and the practical difficulties of solving extremum problems.

Optimal Control of Switched Systems with Application to Networked Embedded Control Systems

Author: Daniel Görges

Publisher: Logos Verlag Berlin GmbH

ISBN: 3832530967

Category: Computers

Page: 201

View: 7604

Release On

This thesis addresses optimal control of discrete-time switched linear systems with application to networked embedded control systems (NECSs). Part I focuses on optimal control and scheduling of discrete-time switched linear systems. The objective is to simultaneously design a control law and a switching (scheduling) law such that a cost function is minimized. This optimization problem exhibits exponential complexity. Taming the complexity is a major challenge. Two novel methods are presented to approach this optimization problem: Receding-horizon control and scheduling relies on the receding horizon principle. The optimization problem is solved based on relaxed dynamic programming, allowing to reduce complexity by relaxing optimality within predefined bounds. The solution can be expressed as a piecewise linear (PWL) state feedback control law. Stability is addressed via an a priori stability condition based on a terminal weighting matrix and several a posteriori stability criteria based on constructing piecewise quadratic Lyapunov functions and on utilizing the cost function as a candidate Lyapunov function. Moreover, a region-reachability criterion is derived. Periodic control and scheduling relies on periodic control theory. Both offline and online scheduling are studied. The optimization problem is solved based on periodic control and exhaustive search. The online scheduling solution can again be expressed as a PWL state feedback control law. Stability is guaranteed inherently. Several methods are proposed to reduce the online complexity based on relaxation and heuristics. Part II focuses on optimal control and scheduling of NECSs. The NECS is modeled as a block-diagonal discrete-time switched linear system. Various control and scheduling codesign strategies are derived based on the methods from Part I regarding the structural properties of NECSs. The methods presented in Part I and II are finally evaluated in a case study.

Optimal Control Of Singularly Perturbed Linear Systems And Applications

Author: Zoran Gajic

Publisher: CRC Press

ISBN: 9780203907900

Category: Technology & Engineering

Page: 326

View: 5520

Release On

Highlights the Hamiltonian approach to singularly perturbed linear optimal control systems. Develops parallel algorithms in independent slow and fast time scales for solving various optimal linear control and filtering problems in standard and nonstandard singularly perturbed systems, continuous- and discrete-time, deterministic and stochastic, multimodeling structures, Kalman filtering, sampled data systems, and much more.