Real-World Machine Learning

Author: Henrik Brink,Joseph Richards,Mark Fetherolf

Publisher: N.A

ISBN: 9781617291920

Category: Computers

Page: 400

View: 1105

Release On

In a world where big data is the norm and near-real-time decisions are crucial, machine learning (ML) is a critical component of the data workflow. Machine learning systems can quickly crunch massive amounts of information to offer insights and make decisions in a way that matches or even surpasses human cognitive abilities. These systems use sophisticated computational and statistical tools to build models that can recognize and visualize patterns, predict outcomes, forecast values, and make recommendations. Real-World Machine Learning is a practical guide designed to teach developers the art of ML project execution. The book introduces the day-to-day practice of machine learning and prepares readers to successfully build and deploy powerful ML systems. Using the Python language and the R statistical package, it starts with core concepts like data acquisition and modeling, classification, and regression. Then it moves through the most important ML tasks, like model validation, optimization and feature engineering. It uses real-world examples that help readers anticipate and overcome common pitfalls. Along the way, they will discover scalable and online algorithms for large and streaming data sets. Advanced readers will appreciate the in-depth discussion of enhanced ML systems through advanced data exploration and pre-processing methods. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Real-World Machine Learning, Manning, 2017

Real-World Machine Learning

Author: Brink-Richards-Fetherolf-Cronin

Publisher: Bukupedia

ISBN: N.A

Category: Education

Page: 266

View: 4657

Release On

As a student of physics and astronomy, I spent a significant proportion of my time dealing with data from measurements and simulations, with the goal of deriving scientific value by analyzing, visualizing, and modeling the data. With a background as a programmer, I quickly learned to use my programming skills as an important aspect of working with data. When I was first introduced to the world of machine learning, it showed not only great potential as a new tool in the data toolbox, but also a beautiful combination of the two fields that interested me the most: data science and programming. Machine learning became an important part of my research in the physical sciences and led me to the UC Berkeley astronomy department, where statisticians, physicists, and computer scientists were working together to understand the universe, with machine learning as an increasingly important tool. At the Center for Time Domain Informatics, I met Joseph Richards, a statistician and coauthor of this book. We learned not only that we could use our data science and machine-learning techniques to do scientific research, but also that there was increasing interest from companies and industries from outside academia. We co-founded Wise.io with Damian Eads, Dan Starr, and Joshua Bloom to make machine learning accessible to businesses. For the past four years, Wise.io has been working with countless companies to optimize, augment, and automate their processes via machine learning. We built a largescale machine-learning application platform that makes hundreds of millions of predictions every month for our clients, and we learned that data in the real world is xvi PREFACE messy in ways that continue to surprise us. We hope to pass on to you some of our knowledge of how to work with real-world data and build the next generation of intelligent software with machine learning. Mark Fetherolf, our third coauthor, was a founder and CTO of multiple startups in systems management and business analytics, built on traditional statistical and quantitative methods. While working on systems to measure and optimize petrochemical refining processes, he and his team realized that the techniques they were using for process manufacturing could be applied to the performance of databases, computer systems, and networks. Their distributed systems management technologies are embedded in leading systems management products. Subsequent ventures were in the measurement and optimization of telecommunications and customer interaction management systems. A few years later, he got hooked on Kaggle competitions and became a machinelearning convert. He led a cable television recommender project and by necessity learned a lot about big-data technologies, adapting computational algorithms for parallel computing, and the ways people respond to recommendations made by machines. In recent years, he has done consulting work in the application of machine learning and predictive analytics to the real-world applications of digital advertising, telecommunications, semiconductor manufacturing, systems management, and customer experience optimization. HENRIK BRINK

Real-World Machine Learning, Brink-Richards-Fetherolf-ronin, 2017

Real-World Machine Learning

Author: Manning Publications, Co

Publisher: Bukupedia

ISBN: N.A

Category: Computers

Page: 266

View: 2560

Release On

Machine learning (ML) has become big business in the last few years: companies are using it to make money, applied research has exploded in both industrial and academic settings, and curious developers everywhere are looking to level up their ML skills. But this newfound demand has largely outrun the supply of good methods for learning how these techniques are used in the wild. This book fills a pressing need. Applied machine learning comprises equal parts mathematical principles and tricks pulled from a bag—it is, in other words, a true craft. Concentrating too much on either aspect at the expense of the other is a failure mode. Balance is essential. For a long time, the best—and the only—way to learn machine learning was to pursue an advanced degree in one of the fields that (largely separately) developed statistical learning and optimization techniques. The focus in these programs was on the core algorithms, including their theoretical properties and bounds, as well as the characteristic domain problems of the field. In parallel, though, an equally valuable lore was accumulated and passed down through unofficial channels: conference hallways, the tribal wisdom of research labs, and the data processing scripts passed between colleagues. This lore was what actually allowed the work to get done, establishing which algorithms were most appropriate in each situation, how the data needed to be massaged at each step, and how to wire up the different parts of the pipeline. Cut to today. We now live in an era of open source riches, with high-quality implementations of most ML algorithms readily available on GitHub, as well as comprehensive and well-architected frameworks to tie all the pieces together. But in the midst of this abundance, the unofficial lore has remained stubbornly inaccessible. The authors xiv FOREWORD of this book provide a great service by finally bringing this dark knowledge together in one place; this is a key missing piece as machine learning moves from esoteric academic discipline to core software engineering skillset. Another point worth emphasizing: most of the machine-learning methods in broad use today are far from perfect, meeting few of the desiderata we might list, were we in a position to design the perfect solution. The current methods are picky about the data they will accept. They are, by and large, happy to provide overly confident predictions if not carefully tended. Small changes in their input can lead to large and mysterious changes in the models they learn. Their results can be difficult to interpret and further interrogate. Modern ML engineering can be viewed as an exercise in managing and mitigating these (and other) rough edges of the underlying optimization and statistical learning methods. This book is organized exactly as it should be to prepare the reader for these realities. It first covers the typical workflow of machine-learning projects before diving into extended examples that show how this basic framework can be applied in realistic (read: messy) situations. Skimming through these pages, you’ll find few equations (they’re all available elsewhere, including the many classic texts in the field) but instead much of the hidden wisdom on how to go about implementing products and solutions based on machine learning. This is, far and away, the best of times to be learning about this subject, and this book is an essential complement to the cornucopia of mathematical and formal knowledge available elsewhere. It is that crucial other book that many old hands wish they had back in the day. BEAU CRONIN HEAD OF DATA, 21 INC. BERKELEY, CA

Python: Real World Machine Learning

Author: Prateek Joshi,John Hearty,Bastiaan Sjardin,Luca Massaron,Alberto Boschetti

Publisher: Packt Publishing Ltd

ISBN: 1787120678

Category: Computers

Page: 941

View: 9845

Release On

Learn to solve challenging data science problems by building powerful machine learning models using Python About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide This practical tutorial tackles real-world computing problems through a rigorous and effective approach Build state-of-the-art models and develop personalized recommendations to perform machine learning at scale Who This Book Is For This Learning Path is for Python programmers who are looking to use machine learning algorithms to create real-world applications. It is ideal for Python professionals who want to work with large and complex datasets and Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. Experience with Python, Jupyter Notebooks, and command-line execution together with a good level of mathematical knowledge to understand the concepts is expected. Machine learning basic knowledge is also expected. What You Will Learn Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Apply your new-found skills to solve real problems, through clearly-explained code for every technique and test Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Increase predictive accuracy with deep learning and scalable data-handling techniques Work with modern state-of-the-art large-scale machine learning techniques Learn to use Python code to implement a range of machine learning algorithms and techniques In Detail Machine learning is increasingly spreading in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. Machine learning is transforming the way we understand and interact with the world around us. In the first module, Python Machine Learning Cookbook, you will learn how to perform various machine learning tasks using a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. The second module, Advanced Machine Learning with Python, is designed to take you on a guided tour of the most relevant and powerful machine learning techniques and you'll acquire a broad set of powerful skills in the area of feature selection and feature engineering. The third module in this learning path, Large Scale Machine Learning with Python, dives into scalable machine learning and the three forms of scalability. It covers the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python. This Learning Path will teach you Python machine learning for the real world. The machine learning techniques covered in this Learning Path are at the forefront of commercial practice. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Python Machine Learning Cookbook by Prateek Joshi Advanced Machine Learning with Python by John Hearty Large Scale Machine Learning with Python by Bastiaan Sjardin, Alberto Boschetti, Luca Massaron Style and approach This course is a smooth learning path that will teach you how to get started with Python machine learning for the real world, and develop solutions to real-world problems. Through this comprehensive course, you'll learn to create the most effective machine learning techniques from scratch and more!

Scala Machine Learning Projects

Build real-world machine learning and deep learning projects with Scala

Author: Md. Rezaul Karim

Publisher: Packt Publishing Ltd

ISBN: 1788471474

Category: Computers

Page: 470

View: 7696

Release On

Powerful smart applications using deep learning algorithms to dominate numerical computing, deep learning, and functional programming. Key Features Explore machine learning techniques with prominent open source Scala libraries such as Spark ML, H2O, MXNet, Zeppelin, and DeepLearning4j Solve real-world machine learning problems by delving complex numerical computing with Scala functional programming in a scalable and faster way Cover all key aspects such as collection, storing, processing, analyzing, and evaluation required to build and deploy machine models on computing clusters using Scala Play framework. Book Description Machine learning has had a huge impact on academia and industry by turning data into actionable information. Scala has seen a steady rise in adoption over the past few years, especially in the fields of data science and analytics. This book is for data scientists, data engineers, and deep learning enthusiasts who have a background in complex numerical computing and want to know more hands-on machine learning application development. If you're well versed in machine learning concepts and want to expand your knowledge by delving into the practical implementation of these concepts using the power of Scala, then this book is what you need! Through 11 end-to-end projects, you will be acquainted with popular machine learning libraries such as Spark ML, H2O, DeepLearning4j, and MXNet. At the end, you will be able to use numerical computing and functional programming to carry out complex numerical tasks to develop, build, and deploy research or commercial projects in a production-ready environment. What you will learn Apply advanced regression techniques to boost the performance of predictive models Use different classification algorithms for business analytics Generate trading strategies for Bitcoin and stock trading using ensemble techniques Train Deep Neural Networks (DNN) using H2O and Spark ML Utilize NLP to build scalable machine learning models Learn how to apply reinforcement learning algorithms such as Q-learning for developing ML application Learn how to use autoencoders to develop a fraud detection application Implement LSTM and CNN models using DeepLearning4j and MXNet Who this book is for If you want to leverage the power of both Scala and Spark to make sense of Big Data, then this book is for you. If you are well versed with machine learning concepts and wants to expand your knowledge by delving into the practical implementation using the power of Scala, then this book is what you need! Strong understanding of Scala Programming language is recommended. Basic familiarity with machine Learning techniques will be more helpful.

Java Deep Learning Projects

Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs

Author: Md. Rezaul Karim

Publisher: Packt Publishing Ltd

ISBN: 1788996526

Category: Computers

Page: 436

View: 2768

Release On

Build and deploy powerful neural network models using the latest Java deep learning libraries Key Features Understand DL with Java by implementing real-world projects Master implementations of various ANN models and build your own DL systems Develop applications using NLP, image classification, RL, and GPU processing Book Description Java is one of the most widely used programming languages. With the rise of deep learning, it has become a popular choice of tool among data scientists and machine learning experts. Java Deep Learning Projects starts with an overview of deep learning concepts and then delves into advanced projects. You will see how to build several projects using different deep neural network architectures such as multilayer perceptrons, Deep Belief Networks, CNN, LSTM, and Factorization Machines. You will get acquainted with popular deep and machine learning libraries for Java such as Deeplearning4j, Spark ML, and RankSys and you’ll be able to use their features to build and deploy projects on distributed computing environments. You will then explore advanced domains such as transfer learning and deep reinforcement learning using the Java ecosystem, covering various real-world domains such as healthcare, NLP, image classification, and multimedia analytics with an easy-to-follow approach. Expert reviews and tips will follow every project to give you insights and hacks. By the end of this book, you will have stepped up your expertise when it comes to deep learning in Java, taking it beyond theory and be able to build your own advanced deep learning systems. What you will learn Master deep learning and neural network architectures Build real-life applications covering image classification, object detection, online trading, transfer learning, and multimedia analytics using DL4J and open-source APIs Train ML agents to learn from data using deep reinforcement learning Use factorization machines for advanced movie recommendations Train DL models on distributed GPUs for faster deep learning with Spark and DL4J Ease your learning experience through 69 FAQs Who this book is for If you are a data scientist, machine learning professional, or deep learning practitioner keen to expand your knowledge by delving into the practical aspects of deep learning with Java, then this book is what you need! Get ready to build advanced deep learning models to carry out complex numerical computations. Some basic understanding of machine learning concepts and a working knowledge of Java are required.

Java programmieren lernen für Dummies

Author: Barry A. Burd

Publisher: John Wiley & Sons

ISBN: 3527812636

Category: Computers

Page: 480

View: 1970

Release On

Steigen Sie mit diesem Buch in die Welt des Programmierens ein und zwar mit der beliebten Programmiersprache Java! Schritt für Schritt werden Sie mit den Grundlagen, wie zum Beispiel Variablen, Schleifen und objektorientierter Programmierung, vertraut gemacht, probieren viele anschauliche Beispiele aus und schreiben Ihr erstes eigenes Programm. Dieses Buch steht Ihnen bei allen Herausforderungen jederzeit mit hilfreichen Tipps und Lösungsvorschlägen zur Seite, sodass Sie auf Ihrem Weg zum Programmierer optimal gerüstet sind! Mit den Programmbeispielen zum Herunterladen können Sie das Gelernte direkt ausprobieren.

Practical Machine Learning

Author: Sunila Gollapudi

Publisher: Packt Publishing Ltd

ISBN: 1784394017

Category: Computers

Page: 468

View: 1078

Release On

Tackle the real-world complexities of modern machine learning with innovative, cutting-edge, techniques About This Book Fully-coded working examples using a wide range of machine learning libraries and tools, including Python, R, Julia, and Spark Comprehensive practical solutions taking you into the future of machine learning Go a step further and integrate your machine learning projects with Hadoop Who This Book Is For This book has been created for data scientists who want to see machine learning in action and explore its real-world application. With guidance on everything from the fundamentals of machine learning and predictive analytics to the latest innovations set to lead the big data revolution into the future, this is an unmissable resource for anyone dedicated to tackling current big data challenges. Knowledge of programming (Python and R) and mathematics is advisable if you want to get started immediately. What You Will Learn Implement a wide range of algorithms and techniques for tackling complex data Get to grips with some of the most powerful languages in data science, including R, Python, and Julia Harness the capabilities of Spark and Hadoop to manage and process data successfully Apply the appropriate machine learning technique to address real-world problems Get acquainted with Deep learning and find out how neural networks are being used at the cutting-edge of machine learning Explore the future of machine learning and dive deeper into polyglot persistence, semantic data, and more In Detail Finding meaning in increasingly larger and more complex datasets is a growing demand of the modern world. Machine learning and predictive analytics have become the most important approaches to uncover data gold mines. Machine learning uses complex algorithms to make improved predictions of outcomes based on historical patterns and the behaviour of data sets. Machine learning can deliver dynamic insights into trends, patterns, and relationships within data, immensely valuable to business growth and development. This book explores an extensive range of machine learning techniques uncovering hidden tricks and tips for several types of data using practical and real-world examples. While machine learning can be highly theoretical, this book offers a refreshing hands-on approach without losing sight of the underlying principles. Inside, a full exploration of the various algorithms gives you high-quality guidance so you can begin to see just how effective machine learning is at tackling contemporary challenges of big data. This is the only book you need to implement a whole suite of open source tools, frameworks, and languages in machine learning. We will cover the leading data science languages, Python and R, and the underrated but powerful Julia, as well as a range of other big data platforms including Spark, Hadoop, and Mahout. Practical Machine Learning is an essential resource for the modern data scientists who want to get to grips with its real-world application. With this book, you will not only learn the fundamentals of machine learning but dive deep into the complexities of real world data before moving on to using Hadoop and its wider ecosystem of tools to process and manage your structured and unstructured data. You will explore different machine learning techniques for both supervised and unsupervised learning; from decision trees to Naive Bayes classifiers and linear and clustering methods, you will learn strategies for a truly advanced approach to the statistical analysis of data. The book also explores the cutting-edge advancements in machine learning, with worked examples and guidance on deep learning and reinforcement learning, providing you with practical demonstrations and samples that help take the theory–and mystery–out of even the most advanced machine learning methodologies. Style and approach A practical data science tutorial designed to give you an insight into the practical application of machine learning, this book takes you through complex concepts and tasks in an accessible way. Featuring information on a wide range of data science techniques, Practical Machine Learning is a comprehensive data science resource.

Python Machine Learning Cookbook

Author: Prateek Joshi

Publisher: Packt Publishing Ltd

ISBN: 1786467682

Category: Computers

Page: 304

View: 6854

Release On

100 recipes that teach you how to perform various machine learning tasks in the real world About This Book Understand which algorithms to use in a given context with the help of this exciting recipe-based guide Learn about perceptrons and see how they are used to build neural networks Stuck while making sense of images, text, speech, and real estate? This guide will come to your rescue, showing you how to perform machine learning for each one of these using various techniques Who This Book Is For This book is for Python programmers who are looking to use machine-learning algorithms to create real-world applications. This book is friendly to Python beginners, but familiarity with Python programming would certainly be useful to play around with the code. What You Will Learn Explore classification algorithms and apply them to the income bracket estimation problem Use predictive modeling and apply it to real-world problems Understand how to perform market segmentation using unsupervised learning Explore data visualization techniques to interact with your data in diverse ways Find out how to build a recommendation engine Understand how to interact with text data and build models to analyze it Work with speech data and recognize spoken words using Hidden Markov Models Analyze stock market data using Conditional Random Fields Work with image data and build systems for image recognition and biometric face recognition Grasp how to use deep neural networks to build an optical character recognition system In Detail Machine learning is becoming increasingly pervasive in the modern data-driven world. It is used extensively across many fields such as search engines, robotics, self-driving cars, and more. With this book, you will learn how to perform various machine learning tasks in different environments. We'll start by exploring a range of real-life scenarios where machine learning can be used, and look at various building blocks. Throughout the book, you'll use a wide variety of machine learning algorithms to solve real-world problems and use Python to implement these algorithms. You'll discover how to deal with various types of data and explore the differences between machine learning paradigms such as supervised and unsupervised learning. We also cover a range of regression techniques, classification algorithms, predictive modeling, data visualization techniques, recommendation engines, and more with the help of real-world examples. Style and approach You will explore various real-life scenarios in this book where machine learning can be used, and learn about different building blocks of machine learning using independent recipes in the book.

Machine Learning for Healthcare Analytics Projects

Build smart AI applications using neural network methodologies across the healthcare vertical market

Author: Eduonix Learning Solutions

Publisher: Packt Publishing Ltd

ISBN: 1789532523

Category: Computers

Page: 134

View: 5718

Release On

Create real-world machine learning solutions using NumPy, pandas, matplotlib, and scikit-learn Key Features Develop a range of healthcare analytics projects using real-world datasets Implement key machine learning algorithms using a range of libraries from the Python ecosystem Accomplish intermediate-to-complex tasks by building smart AI applications using neural network methodologies Book Description Machine Learning (ML) has changed the way organizations and individuals use data to improve the efficiency of a system. ML algorithms allow strategists to deal with a variety of structured, unstructured, and semi-structured data. Machine Learning for Healthcare Analytics Projects is packed with new approaches and methodologies for creating powerful solutions for healthcare analytics. This book will teach you how to implement key machine learning algorithms and walk you through their use cases by employing a range of libraries from the Python ecosystem. You will build five end-to-end projects to evaluate the efficiency of Artificial Intelligence (AI) applications for carrying out simple-to-complex healthcare analytics tasks. With each project, you will gain new insights, which will then help you handle healthcare data efficiently. As you make your way through the book, you will use ML to detect cancer in a set of patients using support vector machines (SVMs) and k-Nearest neighbors (KNN) models. In the final chapters, you will create a deep neural network in Keras to predict the onset of diabetes in a huge dataset of patients. You will also learn how to predict heart diseases using neural networks. By the end of this book, you will have learned how to address long-standing challenges, provide specialized solutions for how to deal with them, and carry out a range of cognitive tasks in the healthcare domain. What you will learn Explore super imaging and natural language processing (NLP) to classify DNA sequencing Detect cancer based on the cell information provided to the SVM Apply supervised learning techniques to diagnose autism spectrum disorder (ASD) Implement a deep learning grid and deep neural networks for detecting diabetes Analyze data from blood pressure, heart rate, and cholesterol level tests using neural networks Use ML algorithms to detect autistic disorders Who this book is for Machine Learning for Healthcare Analytics Projects is for data scientists, machine learning engineers, and healthcare professionals who want to implement machine learning algorithms to build smart AI applications. Basic knowledge of Python or any programming language is expected to get the most from this book.

Routineaufgaben mit Python automatisieren

Praktische Programmierlösungen für Einsteiger

Author: Al Sweigart

Publisher: dpunkt.verlag

ISBN: 3864919932

Category: Computers

Page: 576

View: 6367

Release On

Wenn Sie jemals Stunden damit verbracht haben, Dateien umzubenennen oder Hunderte von Tabelleneinträgen zu aktualisieren, dann wissen Sie, wie stumpfsinnig manche Tätigkeiten sein können. Wie wäre es, den Computer dazu zu bringen, diese Arbeiten zu übernehmen? In diesem Buch lernen Sie, wie Sie mit Python Aufgaben in Sekundenschnelle erledigen können, die sonst viel Zeit in Anspruch nehmen würden. Programmiererfahrung brauchen Sie dazu nicht: Wenn Sie einmal die Grundlagen gemeistert haben, werden Sie Python-Programme schreiben, die automatisch alle möglichen praktischen Aufgaben für Sie abarbeiten: • eine oder eine Vielzahl von Dateien nach Texten durchsuchen • Dateien und Ordner erzeugen, aktualisieren, verschieben und umbenennen • das Web durchsuchen und Inhalte herunterladen • Excel-Dateien aktualisieren und formatieren • PDF-Dateien teilen, zusammenfügen, mit Wasserzeichen versehen und verschlüsseln • Erinnerungsmails und Textnachrichten verschicken • Online-Formulare ausfüllen Schritt-für-Schritt-Anleitungen führen Sie durch jedes Programm und Übungsaufgaben am Ende jedes Kapitels fordern Sie dazu auf, die Programme zu verbessern und Ihre Fähigkeiten auf ähnliche Problemstellungen zu richten. Verschwenden Sie nicht Ihre Zeit mit Aufgaben, die auch ein gut dressierter Affe erledigen könnte. Bringen Sie Ihren Computer dazu, die langweilige Arbeit zu machen!

TensorFlow Deep Learning Projects

10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning

Author: Alexey Grigorev,Rajalingappaa Shanmugamani,Alberto Boschetti,Luca Massaron,Abhishek Thakur

Publisher: Packt Publishing Ltd

ISBN: 1788398386

Category: Computers

Page: 320

View: 7858

Release On

Leverage the power of Tensorflow to design deep learning systems for a variety of real-world scenarios Key Features Build efficient deep learning pipelines using the popular Tensorflow framework Train neural networks such as ConvNets, generative models, and LSTMs Includes projects related to Computer Vision, stock prediction, chatbots and more Book Description TensorFlow is one of the most popular frameworks used for machine learning and, more recently, deep learning. It provides a fast and efficient framework for training different kinds of deep learning models, with very high accuracy. This book is your guide to master deep learning with TensorFlow with the help of 10 real-world projects. TensorFlow Deep Learning Projects starts with setting up the right TensorFlow environment for deep learning. Learn to train different types of deep learning models using TensorFlow, including Convolutional Neural Networks, Recurrent Neural Networks, LSTMs, and Generative Adversarial Networks. While doing so, you will build end-to-end deep learning solutions to tackle different real-world problems in image processing, recommendation systems, stock prediction, and building chatbots, to name a few. You will also develop systems that perform machine translation, and use reinforcement learning techniques to play games. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow, and will be able to build and train your own deep learning models with TensorFlow confidently. What you will learn Set up the TensorFlow environment for deep learning Construct your own ConvNets for effective image processing Use LSTMs for image caption generation Forecast stock prediction accurately with an LSTM architecture Learn what semantic matching is by detecting duplicate Quora questions Set up an AWS instance with TensorFlow to train GANs Train and set up a chatbot to understand and interpret human input Build an AI capable of playing a video game by itself –and win it! Who this book is for This book is for data scientists, machine learning developers as well as deep learning practitioners, who want to build interesting deep learning projects that leverage the power of Tensorflow. Some understanding of machine learning and deep learning, and familiarity with the TensorFlow framework is all you need to get started with this book.

Practical Machine Learning with Python

A Problem-Solver's Guide to Building Real-World Intelligent Systems

Author: Dipanjan Sarkar,Raghav Bali,Tushar Sharma

Publisher: Apress

ISBN: 1484232070

Category: Computers

Page: 530

View: 2138

Release On

Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries and frameworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students

Machine Learning Systems

Designs That Scale

Author: Jeff Smith

Publisher: Pearson Professional

ISBN: 9781617293337

Category: Computers

Page: 224

View: 6949

Release On

Summary Machine Learning Systems: Designs that scale is an example-rich guide that teaches you how to implement reactive design solutions in your machine learning systems to make them as reliable as a well-built web app. Foreword by Sean Owen, Director of Data Science, Cloudera Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology If you're building machine learning models to be used on a small scale, you don't need this book. But if you're a developer building a production-grade ML application that needs quick response times, reliability, and good user experience, this is the book for you. It collects principles and practices of machine learning systems that are dramatically easier to run and maintain, and that are reliably better for users. About the Book Machine Learning Systems: Designs that scale teaches you to design and implement production-ready ML systems. You'll learn the principles of reactive design as you build pipelines with Spark, create highly scalable services with Akka, and use powerful machine learning libraries like MLib on massive datasets. The examples use the Scala language, but the same ideas and tools work in Java, as well. What's Inside Working with Spark, MLlib, and Akka Reactive design patterns Monitoring and maintaining a large-scale system Futures, actors, and supervision About the Reader Readers need intermediate skills in Java or Scala. No prior machine learning experience is assumed. About the Author Jeff Smith builds powerful machine learning systems. For the past decade, he has been working on building data science applications, teams, and companies as part of various teams in New York, San Francisco, and Hong Kong. He blogs (https://medium.com/@jeffksmithjr), tweets (@jeffksmithjr), and speaks (www.jeffsmith.tech/speaking) about various aspects of building real-world machine learning systems. Table of Contents PART 1 - FUNDAMENTALS OF REACTIVE MACHINE LEARNING Learning reactive machine learning Using reactive tools PART 2 - BUILDING A REACTIVE MACHINE LEARNING SYSTEM Collecting data Generating features Learning models Evaluating models Publishing models Responding PART 3 - OPERATING A MACHINE LEARNING SYSTEM Delivering Evolving intelligence

C# Machine Learning Projects

Nine real-world projects to build robust and high-performing machine learning models with C#

Author: Yoon Hyup Hwang

Publisher: Packt Publishing Ltd

ISBN: 1788996585

Category: Computers

Page: 350

View: 5352

Release On

Power your C# and .NET applications with exciting machine learning models and modular projects Key Features Produce classification, regression, association, and clustering models Expand your understanding of machine learning and C# Get to grips with C# packages such as Accord.net, LiveCharts, and Deedle Book Description Machine learning is applied in almost all kinds of real-world surroundings and industries, right from medicine to advertising; from finance to scientifc research. This book will help you learn how to choose a model for your problem, how to evaluate the performance of your models, and how you can use C# to build machine learning models for your future projects. You will get an overview of the machine learning systems and how you, as a C# and .NET developer, can apply your existing knowledge to the wide gamut of intelligent applications, all through a project-based approach. You will start by setting up your C# environment for machine learning with the required packages, Accord.NET, LiveCharts, and Deedle. We will then take you right from building classifcation models for spam email fltering and applying NLP techniques to Twitter sentiment analysis, to time-series and regression analysis for forecasting foreign exchange rates and house prices, as well as drawing insights on customer segments in e-commerce. You will then build a recommendation model for music genre recommendation and an image recognition model for handwritten digits. Lastly, you will learn how to detect anomalies in network and credit card transaction data for cyber attack and credit card fraud detections. By the end of this book, you will be putting your skills in practice and implementing your machine learning knowledge in real projects. What you will learn Set up the C# environment for machine learning with required packages Build classification models for spam email filtering Get to grips with feature engineering using NLP techniques for Twitter sentiment analysis Forecast foreign exchange rates using continuous and time-series data Make a recommendation model for music genre recommendation Familiarize yourself with munging image data and Neural Network models for handwritten-digit recognition Use Principal Component Analysis (PCA) for cyber attack detection One-Class Support Vector Machine for credit card fraud detection Who this book is for If you're a C# or .NET developer with good knowledge of C#, then this book is perfect for you to get Machine Learning into your projects and make smarter applications.

Python Machine Learning Case Studies

Five Case Studies for the Data Scientist

Author: Danish Haroon

Publisher: Apress

ISBN: 1484228235

Category: Computers

Page: 204

View: 6115

Release On

Embrace machine learning approaches and Python to enable automatic rendering of rich insights and solve business problems. The book uses a hands-on case study-based approach to crack real-world applications to which machine learning concepts can be applied. These smarter machines will enable your business processes to achieve efficiencies on minimal time and resources. Python Machine Learning Case Studies takes you through the steps to improve business processes and determine the pivotal points that frame strategies. You’ll see machine learning techniques that you can use to support your products and services. Moreover you’ll learn the pros and cons of each of the machine learning concepts to help you decide which one best suits your needs. By taking a step-by-step approach to coding in Python you’ll be able to understand the rationale behind model selection and decisions within the machine learning process. The book is equipped with practical examples along with code snippets to ensure that you understand the data science approach to solving real-world problems. What You Will Learn Gain insights into machine learning concepts Work on real-world applications of machine learning Learn concepts of model selection and optimization Get a hands-on overview of Python from a machine learning point of view Who This Book Is For Data scientists, data analysts, artificial intelligence engineers, big data enthusiasts, computer scientists, computer sciences students, and capital market analysts.

Python Machine Learning Blueprints: Intuitive data projects you can relate to

Author: Alexander T. Combs

Publisher: Packt Publishing Ltd

ISBN: 1784392235

Category: Computers

Page: 332

View: 5966

Release On

An approachable guide to applying advanced machine learning methods to everyday problems About This Book Put machine learning principles into practice to solve real-world problems Get to grips with Python's impressive range of Machine Learning libraries and frameworks From retrieving data from APIs to cleaning and visualization, become more confident at tackling every stage of the data pipeline Who This Book Is For Python programmers and data scientists - put your skills to the test with this practical guide dedicated to real-world machine learning that makes a real impact. What You Will Learn Explore and use Python's impressive machine learning ecosystem Successfully evaluate and apply the most effective models to problems Learn the fundamentals of NLP - and put them into practice Visualize data for maximum impact and clarity Deploy machine learning models using third party APIs Get to grips with feature engineering In Detail Machine Learning is transforming the way we understand and interact with the world around us. But how much do you really understand it? How confident are you interacting with the tools and models that drive it? Python Machine Learning Blueprints puts your skills and knowledge to the test, guiding you through the development of some awesome machine learning applications and algorithms with real-world examples that demonstrate how to put concepts into practice. You'll learn how to use cluster techniques to discover bargain air fares, and apply linear regression to find yourself a cheap apartment – and much more. Everything you learn is backed by a real-world example, whether its data manipulation or statistical modelling. That way you're never left floundering in theory – you'll be simply collecting and analyzing data in a way that makes a real impact. Style and approach Packed with real-world projects, this book takes you beyond the theory to demonstrate how to apply machine learning techniques to real problems.

TensorFlow Machine Learning Projects

Build 13 real-world projects with advanced numerical computations using the Python ecosystem

Author: Ankit Jain,Armando Fandango,Amita Kapoor

Publisher: Packt Publishing Ltd

ISBN: 1789132401

Category: Computers

Page: 322

View: 8185

Release On

Implement TensorFlow's offerings such as TensorBoard, TensorFlow.js, TensorFlow Probability, and TensorFlow Lite to build smart automation projects Key Features Use machine learning and deep learning principles to build real-world projects Get to grips with TensorFlow's impressive range of module offerings Implement projects on GANs, reinforcement learning, and capsule network Book Description TensorFlow has transformed the way machine learning is perceived. TensorFlow Machine Learning Projects teaches you how to exploit the benefits—simplicity, efficiency, and flexibility—of using TensorFlow in various real-world projects. With the help of this book, you’ll not only learn how to build advanced projects using different datasets but also be able to tackle common challenges using a range of libraries from the TensorFlow ecosystem. To start with, you’ll get to grips with using TensorFlow for machine learning projects; you’ll explore a wide range of projects using TensorForest and TensorBoard for detecting exoplanets, TensorFlow.js for sentiment analysis, and TensorFlow Lite for digit classification. As you make your way through the book, you’ll build projects in various real-world domains, incorporating natural language processing (NLP), the Gaussian process, autoencoders, recommender systems, and Bayesian neural networks, along with trending areas such as Generative Adversarial Networks (GANs), capsule networks, and reinforcement learning. You’ll learn how to use the TensorFlow on Spark API and GPU-accelerated computing with TensorFlow to detect objects, followed by how to train and develop a recurrent neural network (RNN) model to generate book scripts. By the end of this book, you’ll have gained the required expertise to build full-fledged machine learning projects at work. What you will learn Understand the TensorFlow ecosystem using various datasets and techniques Create recommendation systems for quality product recommendations Build projects using CNNs, NLP, and Bayesian neural networks Play Pac-Man using deep reinforcement learning Deploy scalable TensorFlow-based machine learning systems Generate your own book script using RNNs Who this book is for TensorFlow Machine Learning Projects is for you if you are a data analyst, data scientist, machine learning professional, or deep learning enthusiast with basic knowledge of TensorFlow. This book is also for you if you want to build end-to-end projects in the machine learning domain using supervised, unsupervised, and reinforcement learning techniques

Mastering .NET Machine Learning

Author: Jamie Dixon

Publisher: Packt Publishing Ltd

ISBN: 1785881191

Category: Computers

Page: 358

View: 7277

Release On

Master the art of machine learning with .NET and gain insight into real-world applications About This Book Based on .NET framework 4.6.1, includes examples on ASP.NET Core 1.0 Set up your business application to start using machine learning techniques Familiarize the user with some of the more common .NET libraries for machine learning Implement several common machine learning techniques Evaluate, optimize and adjust machine learning models Who This Book Is For This book is targeted at .Net developers who want to build complex machine learning systems. Some basic understanding of data science is required. What You Will Learn Write your own machine learning applications and experiments using the latest .NET framework, including .NET Core 1.0 Set up your business application to start using machine learning. Accurately predict the future using regressions. Discover hidden patterns using decision trees. Acquire, prepare, and combine datasets to drive insights. Optimize business throughput using Bayes Classifier. Discover (more) hidden patterns using KNN and Naive Bayes. Discover (even more) hidden patterns using K-Means and PCA. Use Neural Networks to improve business decision making while using the latest ASP.NET technologies. Explore “Big Data”, distributed computing, and how to deploy machine learning models to IoT devices – making machines self-learning and adapting Along the way, learn about Open Data, Bing maps, and MBrace In Detail .Net is one of the widely used platforms for developing applications. With the meteoric rise of Machine learning, developers are now keen on finding out how can they make their .Net applications smarter. Also, .NET developers are interested into moving into the world of devices and how to apply machine learning techniques to, well, machines. This book is packed with real-world examples to easily use machine learning techniques in your business applications. You will begin with introduction to F# and prepare yourselves for machine learning using .NET framework. You will be writing a simple linear regression model using an example which predicts sales of a product. Forming a base with the regression model, you will start using machine learning libraries available in .NET framework such as Math.NET, Numl.NET and Accord.NET with the help of a sample application. You will then move on to writing multiple linear regressions and logistic regressions. You will learn what is open data and the awesomeness of type providers. Next, you are going to address some of the issues that we have been glossing over so far and take a deep dive into obtaining, cleaning, and organizing our data. You will compare the utility of building a KNN and Naive Bayes model to achieve best possible results. Implementation of Kmeans and PCA using Accord.NET and Numl.NET libraries is covered with the help of an example application. We will then look at many of issues confronting creating real-world machine learning models like overfitting and how to combat them using confusion matrixes, scaling, normalization, and feature selection. You will now enter into the world of Neural Networks and move your line of business application to a hybrid scientific application. After you have covered all the above machine learning models, you will see how to deal with very large datasets using MBrace and how to deploy machine learning models to Internet of Thing (IoT) devices so that the machine can learn and adapt on the fly Style and approach This book will guide you in learning everything about how to tackle the flood of data being encountered these days in your .NET applications with the help of popular machine learning libraries offered by the .NET framework.